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Elucidating the Design Space of Diffusion-Based Generative Models

Abstract

* Argue that the theory and practice of diffusion-based generative models are currently unnecessarily convoluted and seek
to remedy the situation by presenting a design space that clearly separates the concrete design choices.

+ Changes to both the sampling and training processes, as well as preconditioning of the score networks.

* New state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in an unconditional setting, with much
faster sampling (35 network evaluations per image) than prior designs.

1. Introduction

1) First contribution 2) Second contribution

» Look at the theory behind these models from a practical standpoint, < Sampling processes used to synthesize images using diffusion
focusing on the “tangible” objects and algorithms that appear in models.
the training and sampling phases, and less on the statistical + Identify the best-performing time discretization for sampling,
processes. apply a higher order Runge—Kutta method for the sampling

» Focus on the broad class of models where a neural network is process, evaluate different sampler schedules, and analyze the
used to model the score [22] of a noise level dependent usefulness of stochasticity in the sampling process.

marginal distribution of the training data corrupted by Gaussian
noise. Thus, our work is in the context of denoising score
matching [54].

» Asignificant drop in the number of sampling steps required
during synthesis
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3) Third contribution o—=0 0.2
* Focus on the training of the score-modeling neural network. acs

* While continue to rely on the commonly used network architectures
(DDPM [16], NCSN [48]), we provide the first principled analysis of
the preconditioning of the networks’ inputs, outputs, and loss
functions in a diffusion model setting and derive best practices
for improving the training dynamics.

» Also suggest an improved distribution of noise levels during
training, and note that non-leaking augmentation [25]—typically
used with GANs—is beneficial for diffusion models as well.

(a) Noisy images drawn from p(ac: a)
o= 02 20 50

-l-l-‘-l-&-l-l“

T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila.
Training generative adversarial networks with limited data. In Proc.

NeurlPS, 2020. (b) Ideal denoiser outputs D(x; o)

Figure 1: Denoising score matching on CIFAR-10. (a) Images from the training set corrupted with
varying levels of additive Gaussian noise. High levels of noise lead to oversaturated colors; we normalize
the images for cleaner visualization. (b) Optimal denoising result from minimizing Eq. 2 analytically (see
Appendix B.3). With increasing noise level, the result approaches dataset mean.
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2. Expressing diffusion models in a common framework

Definition

* Paata (x) : Data distribution, with standard deviation g;,;,

* p(x;0): Family of mollified distributions obtained by adding i.i.d.
Gaussian noise of standard deviation o to the data.

* For omax > G4ata P(X; 0may) is practically indistinguishable from
pure Gaussian noise.

* The idea of diffusion models

v Randomly sample a noise image x,~N (0, 52,4, 1) and sequentially
denoise it into images x; with noise levels oy = g4 > 04 > -+ >
oy = 0 so that at each noise level x;~p(x;; ;).

v The endpoint x is distributed according to the data.

+ Song et al. [49];

v

v

Present a stochastic differential equation (SDE) that maintains
the desired distribution p as sample x evolves over time.

This allows the above process to be implemented using a
stochastic solver that both removes and adds noise at each
iteration.

They also give a corresponding “probability flow” ordinary
differential equation (ODE) where the only source of randomness
is the initial noise image x,,.

Next page : Examining the ODE, as it offers a fruitful setting for
analyzing sampling trajectories and their discretizations. The
insights carry over to stochastic sampling.
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2. Expressing diffusion models in a common framework Y. Song, et al. Score-based generative modeling through stochastic differential
equations. In Proc. ICLR, 2021.

Score-based Generative Modeling through SDE

@
- { ‘ . score ucti |
.(— dx = [f(x,t) — ¢*(t)Vx log p(x)] dt + g(t)dw
Reverse SDE (noise — data)

w : The standard Wiener process (a.k.a., Brownian motion),
f(,t),R% - R® : A vector-valued function called the drift coefficient of x(t)
g(),R - R : Ascalar function known as the diffusion coefficient of x(t).

Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

Figure 1: Solving a reverse-time SDE yields a score-based
generative model. Transforming data to a simple noise
distribution can be accomplished with a continuous-time SDE.
This SDE can be reversed if we know the score of the distribution
at each intermediate time step, V, logp;(x).



Elucidating the Design Space of Diffusion-Based Generative Models

2. Expressing diffusion models in a common framework Y. Song, et al. Score-based generative modeling through stochastic differential
equations. In Proc. ICLR, 2021.

Score-based Generative Modeling through SDE

Forward SDE Prior Reverse SDE Data

Data
@ dz = f(z,t)dt + g(t)dw _‘b@— dz = [f(z,t) — ¢*(t)V. logp(z)] dt + g(t)dw

Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a noise distribution (the
prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling (Section 3.2). We can also reverse the
associated probability flow ODE (Section 4.3), which yields a deterministic process that samples from the same
distribution as the SDE. Both the reverse-time SDE and probability flow ODE can be obtained by estimating the

score, V, logp:(x) (Section 3.3).
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2. Expressing diffusion models in a common framework Y. Song, et al. Score-based generative modeling through stochastic differential
equations. In Proc. ICLR, 2021.

ODE formulation

+ A probability flow ODE [49] continuously increases or reduces
noise level of the image when moving forward or backward in
time, respectively.

* To specify the ODE, we must first choose a schedule o(t) that
defines the desired noise level at time t. ; Ex; o(t) x t, as it
corresponds to constant-speed heat diffusion [12].

» The defining characteristic of the probability flow ODE

» Evolving a sample x,~p(x4; o(t,)) from time t, to t, (either forward
or backward in time) yields a sample x,~p(xy; a(tp))

» This requirement is satisfied by

M
dx = —d(t) o(t) Vg l rj_';p(tl‘: a(t)) dt, (1)
* An forward step of this ODE nudges the sample away from the
v Dot : time derivative data, at a rate that depends on the change in noise level.
v 'V, logp(x;o(t)) : the score function [22], a vector field that » Equivalently, a backward step nudges the sample towards the
points towards higher density of data at a given noise level. data distribution.
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2. Expressing diffusion models in a common framework

Denoising score matching

* Denoiser function D(x; O') : Minimize the eXpeCted Lz denOiSing . Figure 1 illustrates the behavior of ideal D in practice_
error for samples drawn from p,;,:, Separately for every o,

EyNPdmaEan(D,JQI) ||D(y +* n; U) S y| %9 (2)
then V,logp(xz;o) = (D(x;0) — ;P);,-(,-z’ 3)
y : a training image, n : noise
* The score function isolates the noise component from the signal in (b) Ideal denoiser outputs D(z; o)

x, and Eq. 1 amplifies (or diminishes) it over time.
Figure 1: Denoising score matching on CIFAR-10. (a) Images from the

training set corrupted with varying levels of additive Gaussian noise. High

* The key observation in diffusion models is that D (x; o) can be levels of noise lead to oversaturated colors; we normalize the images for
implemented as a neural network D, (x; o) trained according to Eq.  cleaner visualization. (b) Optimal denoising result from minimizing Eq. 2
2. analytically (see Appendix B.3). With increasing noise level, the result

: ... . approaches dataset mean.
* Dy may include additional pre- and post-processing steps, such

as scaling x to an appropriate dynamic range
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2. Expressing diffusion models in a common framework

Time-dependent signal scaling Solution by discretization
+ Some methods (see Appendix C.1) introduce an additional scale + The ODE to be solved is obtained by substituting Eq. 3 into Eq. 4 to
schedule s(t) and consider x = s(t)x to be a scaled version of the define the point-wise gradient

original, non-scaled variable x.
< - 4 _ Z
+ This changes the time-dependent probability density, and ¥ logplw; o) = (Do o) — 2] o,
consequently also the ODE solution trajectories.

22 & — s(t)2 6(t) a(t) Vi logp (%;U(t))] dt.
» The resulting ODE is a generalization of Eq. (1). ==

le = —a(t) a(t) Vg logp(a: a(t)) dt, _ . . .
ar 5(£) (t) Vo logp(a; o )) ‘ * The solution can be found by numerical integration, i.e., taking

finite steps over discrete time intervals.

5(¢

di = "(‘,f)) x — 5(t)? a(t) o(t) Vg logp (%}U(t))} de.  (4)

 This requires choosing both the integration scheme (e.g., Euler or
a variant of Runge-Kutta), as well as the discrete sampling
times {to, tll ttty tN}

* Note that : Explicitly undo the scaling of x when evaluating the score  « Many prior works rely on Euler’s method, but we show in Section 3
function to keep the definition of p(x; o) independent of s(¢). that a 2nd order solver offers a better computational tradeoff.

10
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2. Expressing diffusion models in a common framework

Putting it together

Table 1: Specific design choices
employed by different model families.

N is the number of ODE solver
iterations that we wish to execute
during sampling.

The corresponding sequence of time
steps is {ty, t1,:*, ty}, Where ty = 0.

If the model was originally trained for
specific choices of N and {t;}, the
originals are denoted by M and {y;},
respectively.

The denoiser is defined as
Dg(x;0) = cskip(0)x +
Cout(a)&(cin(o'):m Cnoise (0'))

Fp : the raw neural network layers

VP [49] VE [49] iDDPM [37] + DDIM [47] Ours (“EDM™)
Sampling (Section 3)
ODE solver Euler Euler , Euler g :de: Heun
Time steps tien 1+ 55— 1) g fet et 5 Uy Moido ;o o Where (

D=

)’

1
N—l (Umin ? — Omax

uy =0
1= mnx(&ij/]aj <o !
Schedule o(t) VexBat+Bmnt _1 Vi t t
Scaling s(t)  1/V e2Pat?+Buint 1 1 1
Network and preconditioning (Section 5)
Architecture of Fj DDPM++ NCSN++ DDPM (any)
Skip scaling cgip(0) 1 | 1 03/ (0% +034)
Output scaling con(0) — o — o - adm/\/gm
Inputscaling  cin(0) 1/VoZ+1 1 1/vVe2+1 1//o? + o2,
Noise cond. ¢noie(0) (M —1) 0= 1(0o) ln(%a) M —1—arg min; [u; — o| %ln(a)
Training (Section 5)
Noise distribution o o) ~U(e, 1) In(o) ~U(In(omin). o=uj, j~U{0,M—-1} In(c)~N(Preans P2)
o In(0max))
Loss weighting (o) 1/0? 1/02 1/0?  (note: *) (02402,) /(0 - Oga)?
Parameters Ba =19.9, Buin = 0.1  Omin = 0.02 & =sin’ (3 wben) Omin = 0.002, Oax = 80
& =102, =10""% omx =100 C1 = 0.001, Cy = 0.008 Oan =05,p=7

M = 1000

M = 1000, jo = 8'

Pmean= —1-2. -Psld =l

* iDDPM also employs a second loss term Ly,

T1In our tests, jo = 8 yielded better FID than jo = 0 used by iDDPM
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3. Improvements to deterministic sampling

Topics in diffusion model research : Improving the output quality
and/or Decreasing the computational cost of sampling

Our hypothesis : Choices related to the sampling process are
largely independent of the other components; network
architecture and training details.

v In other words, the training procedure of Dy should not dictate
a(t), s(t), and {t;}, nor vice versa

v" From the sampler viewpoint, Dy is simply a black box [55, 56].

We evaluate the “DDPM++ cont. (VP)” and “NCSN++ cont. (VE)”
models by Song et al. [49] trained on unconditional CIFAR-10 [29] at
32x32, corresponding to the variance preserving (VP) and variance
exploding (VE) formulations [49], originally inspired by DDPM [16] and
SMLD [48].

We also evaluate the “ADM (dropout)” model by Dhariwal and Nichol
[9] trained on class-conditional ImageNet [8] at 64x64,
corresponding to the improved DDPM (iDDPM) formulation [37]. This
model was trained using a discrete set of M = 1000 noise levels.

12
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3. Improvements to deterministic sampling

FID FID FID \ —
200 500 20 \ | — Original sampler
100 200 Y| e Our reimplementation
50 100 ‘| — + Heun & our {t;}
? o 10 — +Ouro(t) & s(t)
20 7 - - Black-box RK45
10 20 5
- 10
3 ! 5 3 ey
D) 35 % 9 79
NFE=8 16 32 64 128 256 512 1024 8 32 128 512 2048 8192 8 16 32 64 128 256 512 1024
(a) Uncond. CIFAR-10, VP ODE (b) Uncond. CIFAR-10, VE ODE (¢) Class-cond. ImageNet-64, DDIM

Figure 2: Comparison of deterministic sampling methods using three
pre-trained models. For each curve, the dot indicates the lowest NFE
whose FID is within 3% of the lowest observed FID.

» Figure 2 shows FID as a function of neural function evaluations
(NFE), how many times Dy is evaluated to produce a single image.

» Given that the sampling process is dominated entirely by the cost
of Dg, improvements in NFE translate directly to sampling speed.

* The reimplementations of these methods in our unified framework
(orange) yield similar but consistently better results

13
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3. Improvements to deterministic sampling

Discretization and higher-order integrators.

) i _ _ Algorithm 1 Deterministic sampling using Heun’s 2" order method with arbitrary o (¢) and s(t).
* Solving an ODE numerically is necessarily an

approximation of following the true solution I: procedure HEUNSAMPLER(Ds(2;0), o(t), 5(t), ticfo....N}) o
trajectory. 2: sample g ~ N(O, a“(to) s°(to) I) > Generate initial sample at ¢g
- fori € {0,...,N — 1} do > Solve Eq. 4,over N time steps
* At each step, the solver introduces truncation o(ts)  §(t) & (t:)s(ti) 2
error that accumulates over the course of Nsteps.  + [ di (a(ti) Talz) ) &= = al) De (s(t,—) ; U(tz‘)) > Evaluate da/dt at t;
The local error g(_anerally scale_s super_llnearly with 5 ®iy1 — @ + (bip1 — t:)ds > Take Euler step from #; to ;41
respect to step size, and thus increasing N 8 .
improves the accuracy of the solution 6: if o(t;+1) # O then > Apply 2™ order correction unless o goes to zero
' tis1) S(ti+1)) G (tiv1)s(ti+1) ( Tit1 )
7: i - [ B = D ;o(tie1)) b Eval. dae/dt at t;
[ "(tl+1) s(tiv1) - o(tiv1) g s(tiv1) ite) all. dasjenatisy
8: Tit1 — Ti + (tipr — t:)(5di + 5di) > Explicit trapezoidal rule at ;44
* Euler’'s method : the first order ODE solver with 0: return y > Return noise-free sample at ¢y

0(h?) local error with respect to step size h.

* Higher-order Runge—Kutta methods [50] scale
more favorably but require multiple evaluations of Dy
per step.

+ Algorithm 1 introduces an additional correction step for x;,; to
account for change in dx/dt between t; and t; 4.

« This correction leads to 0(h?) local error at the cost of one additional

* Heun’s 2nd order method [2] (a.k.a. improved evaluation of D, per step.

Euler, trapezoidal rule) to provide an excellent _ _ o
tradeoff between truncation error and NFE. * Note that stepping to ¢ = 0 would result in a division by zero, so we

revert to Euler’s method in this case.
14
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3. Improvements to deterministic sampling

Discretization and higher-order integrators.

v Time steps {t;}

* The time steps {t;} determine how the step sizes and thus * Results for Heun’s method and Eq. 5 are shown as the green
truncation errors are distributed between different noise levels. curves in Figure 2. Heun’s method reaches the same FID as Euler’s
« We adopt a parameterized scheme where the time steps are defined method with considerably lower NFE.

according to a sequence of noise levels {g;} , i.e.,.

ti=0""(0)

- Set o,y = (4; + B)? and select the constants A and B so that
0y = Omax and oy_q1 = Opin, Which gives

o=

1 - 1
Oi<h = (Omax® + =7 (Omin® — Omxx?))’ and oy =0. (5)

- p controls how much the steps near g,,;,, are shortened at the
expense of longer steps near g,

- Suggestp =7

15
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3. Improvements to deterministic sampling

Trajectory curvature and noise schedule.

* Schedule o(t) and Scale s(t) defines the shape of the ODE * An immediate consequence is that at any x and t, a single Euler
solution trajectories. step to t = 0 yields the denoised image Dg(x; t).

* The choice of a(t) and s(t) offers a way to reduce the truncation * The tangent of the solution trajectory therefore always points
errors, as their magnitude can be expected to scale proportional to towards the denoiser output. This can be expected to change only
the curvature of dx/dt. slowly with the noise level, which corresponds to largely linear

« Best choice : o(t) = t and s(t) = 1, made in DDIM [47]. (Red curves solution trajectories.
in Figure 2) .

- The ODE of Eq 4 SlmpllerS to * The 1D ODE sketch of Figure 3c

» Solution trajectories approach linear at both large and small noise

5(t) 2 . T levels, and have substantial curvature in only a small region in
dx = S0 x —s5(t)” 6(t) o(t) Ve logp (?t)a U(t))] dt. between.
‘ * In Figure 1(b), the change between different denoiser targets occurs
da:/dt - (:n — D(x; t))/t in a relatively narrow ¢ range. With the advocated schedule, this
’ corresponds to high ODE curvature being limited to this same range.
- o and s become interchangeable. cr:()l 02 05 | 5 ‘3 s 7 "o 20 50"

Fig. 1(b) Ideal deniser
outputs D(x;0)
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3. Improvements to deterministic sampling

H H €r

29 . 40 40

| e = 20 - 20 -

0 1 1 0 0
1 = — { 207 Extreme ~ B —207

- curvature o
_2 T T T _40 T T T - '—40 T T T T 1
1=0.0 0.2 0.4 0.6 08 t=0 200 400 600 =0 5 10 15 20 25
(a) Variance preserving ODE [49] (b) Variance exploding ODE [49] (c) DDIM / Our ODE

Figure 3: A sketch of ODE curvature in 1D where p4,;, is two Dirac peaks at x = +1. Horizontal t axis is chosen to show ¢ €
[0,25] in each plot, with insets showing o € [0,1] near the data. Example local gradients are shown with black arrows.

(a) Variance preserving ODE of Song et al. [49] has solution trajectories that flatten out to horizontal lines at large ¢. Local gradients
start pointing towards data only at small o.

(b) Variance exploding variant has extreme curvature near data and the solution trajectories are curved everywhere.

(c) With the schedule used by DDIM [47] and us, as ¢ increases, the solution trajectories approach straight lines that point towards
the mean of data. As ¢ — 0, the trajectories become linear and point towards the data manifold.
17
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4. Stochastic Sampling

+ Deterministic sampling offers many benefits,

v' e.g., the ability to turn real images into their corresponding latent
representations by inverting the ODE.

v" However, lead to worse output quality [47, 49] than stochastic

sampling that injects fresh noise into the image in each step.

* Given that ODEs and SDEs recover the same distributions in theory,
what exactly is the role of stochasticity

Backgrounds

* The SDEs of Song et al. [49] can be generalized [20, 58] as a sum
of the probability flow ODE of Eq. 1 and a time-varying Langevin
diffusion SDE [14] (see Appendix B.5):

w; : the standard Wiener process.
dx, dx_: Separate SDEs for moving forward and backward in time

Langevin term : Combination of a deterministic score-based
denoising term and a stochastic noise injection term, whose net
noise level contributions cancel out.

B(t); Noise replacement schedue : Expresses the relative rate at
which existing noise is replaced with new noise. The SDEs of
Song et al. [49] are recovered with the choice B(t) = a(t)/a(t),
whereby the score vanishes from the forward SDE.

dzy = —6(t)o(t)Vz logp(z;o(t)) dt |+ 3(t)o(t)*Va log p(z; o(t)) dt +1/25(t)o(t) dwe, | (6) The implicit Langevin diffusion drives

the sample towards the desired

g
probability flow ODE (Eq.[T) deterministic noise decay

N

noise injection marginal distribution at a given time,

Langevin d?gfusion SDE

g actively correcting for any errors
made in earlier sampling steps.

18
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4. Stochastic Sampling

Our stochastic sampler

Algorithm 2 Our stochastic sampler with o(t) = ¢ and s(t) = 1.

» A stochastic sampler that combines our 2nd
order deterministic ODE integrator with

1: procedure STOCHASTICSAMPLER(Dg(2;0), tic{o,....N}, Vie{0,....N—1}> Snoise)
explicit Langevin-like “churn” of adding and ',2; sample o ~ N (0, &5 ) GR= {mm(%, ﬁ—l) if £: €[ Stmin,Smax

fori e {0,...,N —1} do

removing noise 4 sample € ~ N (0, 52, 1) 0 otherwise
o _ 3 N ti + ti +vits i Select temporarily increased noise level #;
* At each step i, given the sample x; at noise 6: C T :c1 m € > Add new noise to move from t; to f;
level t; (= a(t;)), i ) d; m, — Dg(2;; t; ]) > Evaluate da /dt at £,
8: E riq — T+ (tiv1 — tz)d > Take Euler step from t; to tit+1
1) First, we add noise to the sample 0 if ;11 # O then o
according to a fact9r yi = 0toreacha 10: [ dl + (@aga — Do(@i41; tz+1))/tz+1 > Apply 2™ order correction
higher noise level t; = t; + y;t; il Bir1 — B+ (bipr — £) (A + 1d))
12: return oy
2) Second, from the increased-noise sample
%;, we solve the ODE backward from ; to _ _
t;,, with a single step. This yields a * In our method, th_e pgr_amgters used to evaluate Dy on line 7 o_fAIgorlthm 2 correspond to
sample x;,, with noise level t;,, and the Fhe state afterAn0|se injection, whereas an Euler—Maruyama -like method would use x;; t;
iteration continues. instead of %;; t;

* In the limit of A, approaching zero, there may be no difference between these choices, but
the distinction appears to become significant when pursuing low NFE with large steps.

19
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4. Stochastic Sampling

Practical Considerations

* Increasing the amount of stochasticity is effective in correcting * If the degradation is caused by flaws in Dy (x; t), they can only be
errors made by earlier sampling steps, but it has its own remedied using heuristic means during sampling.
drawbacks. (Appendix E.1)

v Excessive Langevin-like addition and removal of noise « We address the drift toward oversaturated colors by only
results in gradual loss of detail in the generated images with all enabling stochasticity within a specific range of noise levels
datasets and denoiser networks. t; € [Semins S 1

4 tminy“tmax1-

v' There is a drift toward oversaturated colors at very low and v For these noise levels, we define y; = S.,,,.../V, where ..,
high noise levels. controls the overall amount of stochasticity. Clamp y; to never

introduce more new noise than what is already present in the

+ Suspect that practical denoisers induce a slightly image

nonconservative vector field in Eq. 3, violating the premises of

Langevin diffusion and causing these detrimental effects. + The loss of detail can be partially counteracted by setting ,,,...

* Notably, our experiments with analytical denoisers (such as the slightly above 1 to inflate the standard deviation for the newly
one in Figure 1b) have not shown such degradation. added noise.

v This suggests that a major component of the hypothesized non-
conservativity of Dg(x; t) is a tendency to remove slightly too
much noise—most likely due to regression toward the mean
that can be expected to happen with any L2-trained denoiser

20
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4. Stochastic Sampling

Evaluation
FID FID HIER FID
3.2 4.5 — 3.0
3.0 P 2.8
4.0 E \
2.8 E——____.-‘r—-—._____/-__ 2.6
2.6 35 P 2.4
2.4 N 2.2
2 2 3.0 2‘0
: — Deterministic — Stmin,tmax = [0, 0] 18
2.0 [-{ — Siminimazx + Snoise = 1 — Optimal settings 2.6 )
— Shoise = 1 - - Original sampler 1.6
L8| | Jolicoeur-Martineau et al. 2.0 2.23 1.4
NFE=16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048 16
(a) Uncond. CIFAR-10, VP (b) Uncond. CIFAR-10, VE

Figure 4: Evaluation of our stochastic sampler (Algorithm . The purple curve corresponds to
optimal choices for {Schumn. Stmins Simax» Snoise }; Orange, blue, and green correspond to disabling the
effects of Simin tmax and/or Speise. The red curves show reference results for our deterministic sampler
(Algorithm|T), equivalent to setting S, = 0. The dashed black curves correspond to the original
stochastic samplers from previous work: Euler—Maruyama [49] for VP, predictor-corrector [49] for
VE. and iDDPM [37] for ImageNet-64. The dots indicate lowest observed FID.

(¢) Class-cond. ImageNet-64

32 64 128 256 512 1024
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5. Preconditioning and training

Practices for training neural networks in a supervised fashion

» Training a neural network to model D directly would be far from * Propose to precondition the neural network with a o-dependent skip
ideal connection that allows it to estimate either y or n, or something in

v' For example, as the input x = y + n is a combination of clean between

signal y and noise n~N (0; 6I), its magnitude varies immensely
depending on noise level . Dg(z;0) = cskip(0)  + cou() Fo(cin(0) ®; cnoise(7))  (7)

v For this reason, the common practice is to not represent D, as a

neural network directly, but instead train a different network Fyg ¥ Fp : the neural network to be trained
from which Dy is derived. v Cskip (o) : Modulates the skip connection
Previous methods [37,47,49] v ¢in(0), cour(0) : Sc-:ale the inp-ut and outp-lft n?agr-ﬂtudes
. . . o v Choise(0) : Map noise level g into a conditioning input for Fy.
+ the input scaling via a o-dependent normalization factor and ] ] ] ]
precondition the output by training Fy to predict n scaled to unit v Taking a weighted expectation of Eq. 2 over the noise levels
variance, from which the signal is then reconstructed via Dy(x; o) = gives the overall training loss
x—oFgy("). Dy(x;0) =x — o Fy(") Eo.yn [M0) || D(y +n;0) — ylf3]
* Drawback : At large o, the network needs to fine-tune its output _
carefully to cancel out the existing noise n exactly and give the where 0 ~ Pains Y ~ Pdawa> and n ~ N(0, o*T)

output at the correct scale; note that any errors made by the

network are amplified by a factor of o. + The probability of sampling a given noise level ¢ is given by pirain ()

* In this situation, it would seem much easier to predict the and the corresponding weight is given by A(¢). We can equivalently
expected output Dy(x; o) directly. express this loss with respect to the raw network output F inEq. 7:
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Loss Function

» Equivalently express the loss with respect to the raw network output Fy in Eq. 7

Dg(l'; J) = ('skip(ﬁ) T + Cout (ﬁ) Fo (('in(”—) €] "'noise(ﬂ)) (7)

4

]Ea,y,n |:(\(O’) ('Ou[(n—)i ” :FH‘ (('in(ﬁ) : (lJ + '71,); ('lloiSE(U))l— 7 *(y = ('skip(ﬁ) * (y i 'n.)) HZ

Cout(T)
-

~

effective weight network output

~
effective training target

(8)

» This form reveals the effective training target of Fy, allowing us to determine suitable choices for the

preconditioning functions from first principles

* Best choices in Table 1 : Requiring network inputs and training

targets to have unit variance (cj,, cout), @and amplifying errors in Fg as
little as possible (cgkip)-

* The formula for c,,;se is chosen empirically

Architecture of Fj

(any)
Jc?ala/ (02 + Jgﬂl'd)
O - Odata/ \/Udgata + 02

% In(o)
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Table 2: Evaluation of our training improvements. The starting point (config A) is VP & VE using
our deterministic sampler. At the end (configs E,F), VP & VE only differ in the architecture of Fj.

CIFAR-10 [29] at 32x32 FFHQ [27] 64 x 64 AFHQv2 [7] 64 x64
Conditional Unconditional Unconditional Unconditional
Training configuration VP VE VP VE VP VE VP VE
A Baseline [49] (*pre-trained) 248 3.11 301* 37 339 25.95 2.58 18.52
B + Adjust hyperparameters 2.18 248 251 294 313 2253 2.43 23.12
C + Redistribute capacity 2.08 2.52 231 2.83 2.78 41.62 2.54 15.04
D + Our preconditioning 209 264 228 310 2.94 3.39 2.79 3.81
E + Our loss function Q 1.88 1.86 205 199 2.60 2.81 2.29 2.28
F + Non-leaky augmentation 1.79 1.79 1.97 1.98 2.39 2.53 1.96 2.16
NFE 35 35 35 35 79 79 79 79
+ Config A: Baseline : Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. + Config D : We then replace the original choices of (¢, Cout, Croises Cskip) With our
Ermon, and B. Poole. Score-based generative modeling through stochastic preconditioning, which keeps the results largely unchanged—except for VE that
differential equations. In Proc. ICLR, 2021 improves considerably at 64x64 resolution.
+ Config B : Re-adjust the basic hyperparameters + Instead of improving FID per se, the main benefit of our preconditioning is that it
« Config C : Improve the expressive power of the model by removing the lowest- makes thg trair?ing more robust, enabling us to turn our focus on redesigning the
resolution layers and doubling the capacity of the highest-resolution layers loss function without adverse effects

instead; see Appendix F.3
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Loss weighting and sampling (config E in Table 2)

* training Fy as preconditioned in Eq. 7 incurs an effective per-sample
loss weight of A(0)cyyc(0)?

Architecture of Fj
SKip scaling  egip(0)

2 =
]Ecr,y,n [\)\(O’) Cout(o-)% ” Fy (Cin(o) ; (y + n) Cnoise(a)) - ﬁ(a)(y = Cskip(o') : (y + n)) ”2 Output scaling cou (o)

"

W e & "
effective weight network output effective training target

« To balance the effective loss weights, we set A(c) = 1/cqut(0)?,
which also equalizes the initial training loss over the entire ¢ range
as shown in Figure 5a (green curve).

* Finally, we need to select p.in(0), i.€., how to choose noise
levels during training.

v Inspecting the per- ¢ loss after training (blue and orange curves)
reveals that a significant reduction is possible only at
intermediate noise levels;

v At very low levels : it is both difficult and irrelevant to discern the
vanishingly small noise component,

v At high levels : the training targets are always dissimilar from the
correct answer that approaches dataset average.

Input scaling  cin(0)

Noise cond. ¢ppise(0)

(any)

2 2 2
odata/ (U + Udala)
g- Ud‘“a/ V a;ialn + 02
VAVELETM

}ln(a)

* Therefore, we target the training efforts to the relevant range using a
simple log-normal distribution for p.,i, (o) as detailed in Table 1

and illustrated in Figure 5a (red curve).

» Table 2 shows that our proposed p;.4in (¢) and A(o) (config E) lead
to a dramatic improvement in FID in all cases when used in
conjunction with our preconditioning (config D).
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Augmentation regularization (config F in Table 2) Stochastic sampling revisited

» To prevent potential overfitting that often plagues diffusion models
with smaller datasets, we borrow an augmentation pipeline from the
GAN literature [25].

» The pipeline consists of various geometric transformations (see
Appendix F.2) that we apply to a training image prior to adding
noise.

* Interestingly, the relevance of stochastic sampling appears to
diminish as the model itself improves, as shown in Figure 5b,c.

* When using our training setup in CIFAR-10 (Figure 5b), the best
results were obtained with deterministic sampling, and any amount
of stochastic sampling was detrimental.

+ To prevent the augmentations from leaking to the generated images,
we provide the augmentation parameters as a conditioning input
to Fy; during inference we set the them to zero to guarantee that
only non-augmented images are generated.

« Table 2 shows that data augmentation provides a consistent
improvement (config F) that yields new state-of-the-art FIDs of 1.79
and 1.97 for conditional and unconditional CIFAR-10, beating the
previous records of 1.85 [45] and 2.10 [53].

[25] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training
generative adversarial networks with limited data. In Proc. NeurlPS, 2020
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loss — FID — FID -

14— Loss after init ~ — CIFAR-10 R — VP, original — VP, our model 26" 2.66 — Original — Our model
"~ | |- - Distribution of ¢ — FFHQ-64 ' — VE. original — VE, our model '

1.2 ! 24

1.0 2.2%2%:

0.8
0.6
0.4
0.2 14

0.0 1.2
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2.0
1.8
1.6

(a) Loss & noise distribution (b) Stochasticity on CIFAR-10 (c) Stochasticity on ImageNet-64

Figure 5: (a) Observed initial (green) and final loss per noise level, representative of the the 32x32
(blue) and 64 x 64 (orange) models considered in this paper. The shaded regions represent the standard
deviation over 10k random samples. Our proposed training sample density is shown by the dashed
red curve. (b) Effect of Schurn on unconditional CIFAR-10 with 256 steps (NFE = 511). For the
original training setup of Song et al. [49], stochastic sampling is highly beneficial (blue, green), while
deterministic sampling (Schurn = 0) leads to relatively poor FID. For our training setup, the situation
is reversed (orange, red); stochastic sampling is not only unnecessary but harmful. (c) Effect of Schym
on class-conditional ImageNet-64 with 256 steps (NFE = 511). In this more challenging scenario,
stochastic sampling turns out to be useful again. Our training setup improves the results for both

o . ) 27
deterministic and stochastic sampling.
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Appendix A. Additional Results

Deterministic, Original sampler (DDIM); FID 2.91 NFE 250 Deterministic, Our sampler (Alg. 1); FID 2.66 NFE 79
, - -

Ostrich

Beagle

Figure 6: Results for different samplers on class-conditional ImageNet [8] at 64x64 resolution, using the pre-trained ADM model by
Dhariwal and Nichol [9]. The cases correspond to dots in Figures 2c and 4c.
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Appendix A. Additional Results

Deterministic, Our sampler & training configuration; FID 2.23 NFE 79

L ’ -
.y 3 v o
- = - 1
E =, i
| '
el

Ostrich

Stochastic, Our sampler & training configuration; FID 1.36 NFE 511

Ostrich

Beagle

Figure 7: Results for our training configuration on class-conditional ImageNet [8] at 64x64 resolution, using our deterministic and
stochastic samplers.
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Appendix A. Additional Results

FFHQ, Original training (config A), VP; FID 3.39 NFE 79

Figure 11: Results for different training configurations on FFHQ [27] at 64x64 resolution, using our deterministic sampler with the same set of latent 30
codes (x,) in each case.
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Class-conditional ImageNet-64, Pre-trained Class-conditional CIFAR-10, Our training, VP

Figure 12: Image quality and FID
as a function of NFE using our
deterministic sampler.

At 32x32 resolution, reasonable
image quality is reached around
NFE = 13, but FID keeps improving
until NFE = 35.

At 64x64 resolution, reasonable
image quality is reached around
NFE = 19, but FID keeps improving
until NFE = 79

= 1432 672 422 248 .86 179
NFE 7 11 19 79 7 9 Il 13 15 19 27 35
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Appendix A. Additional Results

Unconditional FFHQ, Our training, VP

FID 142.34
NFE 7

Unconditional AFHQv2, Our Training, VP

Figure 12: Image quality and FID
as a function of NFE using our
deterministic sampler.

At 32x32 resolution, reasonable
image quality is reached around
NFE = 13, but FID keeps improving
until NFE = 35.

At 64x64 resolution, reasonable
image quality is reached around
NFE = 19, but FID keeps improving
until NFE = 79
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Table 3: Evaluation of our improvements to

deterministic sampling. The values correspond to the
curves shown in Figure 2. We summarize each curve with | Sampling method

two key values: the lowest observed FID for any NFE
(“FID”), and the lowest NFE whose FID is within 3% of

Unconditional CIFAR-10 at 32x32

Class-conditional

the lowest FID (“NFE”). The values marked with “~” are Our Algorithm
identical to the ones above them, because our sampler + Heun & our #;

uses the same a(t) and s(t) as DDIM.

Table 4: Evaluation and ablations of our
improvements to stochastic sampling. The
values correspond to the curves shown in Figure 4.

VP VE ImageNet-64

FID | NFE] FID| NFE] FID| NEFE|
Original sampler [49, 9] 2.85 256 5.45 8192 2.85 250
2.79 512 4,78 8192 273 384
2.88 255 4.23 191 2.64 79
+Our o (t) & s(t) 2.93 35 3.73 27 - -
Black-box RK45 2.94 115 3.69 93 2.66 131

Unconditional CIFAR-10 at 32x 32 Class-conditional
VP VE ImageNet-64

Sampling method FID| NEFE| FID| NFE| FID|] NFE|
Deterministic baseline (Alg. M 2.93 35 3.73 27 2.64 79
2.69 95 2.97 383 1.86 383
2.54 127 2.51 511 1.63 767
! 252 95 2.84 191 1.84 758
Alg. 2| Optimal settings 2.27 383 2.23 767 1.55 511
Previous work [49, 9] 2.55 768 2.46 1024 2.01 384
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Appendix B. Derivation of formulas

B1. Original ODE / SDE
formulation from previous
work (Song et al.)

However, f and g are of little practical
interest in themselves, whereas the
marginal distributions are of utmost
importance in terms of training the
model in the first place,
bootstrapping the sampling process,
and understanding how the ODE
behaves in practice.

Given that the idea of the probability
flow ODE is to match a particular set
of marginal distributions, it makes
sense to treat the marginal
distributions as first-class citizens
and define the ODE directly based
on a(t) and s(t), eliminating the need

for f(t) and g(t).

Song et al. [49] define their forward SDE (Eq. 5 in [49]) as
dz = f(x,t) dt + g(t) dws, 9)

where w; is the standard Wiener process and f(-,¢) : R? = R% and g(-) : R — R are the drift and
diffusion coefficients, respectively, where d is the dimensionality of the dataset. These coefficients
are selected differently for the variance preserving (VP) and variance exploding (VE) formulations,
and f(-) is al|ways of the form f(x,t) = f(t) @, where f(-) : R — R. Thus, the SDE can be
equivalently written as

dx = f({) = dt + g(f) dw;. (10)
The perturbation kernels of this SDE (Eq. 29 in [49]) have the general form
poe(x(t) | 2(0)) = N (x(t); s(t) 2(0), s(t)* o(t)* 1), (11)
where N (z; pt, X) denotes the probability density function of N'(u, ) evaluated at z,
' " 9(8)?
5(t) = exp ( | 7@ ds), nd ol =/ [ L& ae (12)
0 o s()

The marginal distribution p;(x) is obtained by integrating the perturbation kernels over x(0):
\lj pe(x) = fd pot(@ | o) pdata(x0) dao. (13)
R

Song et al. [49] define the probability flow ODE (Eq. 13 in [49]) so that it obeys this same p;(a):
dz = [f(t) = — 3 9(t)* Vi log pe(z)] dt. (14)
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B2. Our ODE formulation (Eq.

1 and Eq. 4)

Let us start by expressing the marginal distribution of Eq.[13]in closed form:

pi@) = [ o] 20) pusleo) doo (15)
_ /R panal0) [N (s 5(0) o, s()? (02 T)] o (16)
= [ pua(wo) [s()=I N (@/s(0); 0, (0 1)) d (17)
= () f Paa(@o) N (a/5(t); @0, o(t)? T) dazg (18)
= 507 [paaa * N (0, o(1)? D] (2/5(1)), (19)

where p, * pp denotes the copvolution of probability density functions p, and pp. The expression
inside the brackets corresponfls to a mollified version of pgaa Obtained by adding i.i.d. Gaussian noise
to the samples. Let us dengte this distribution by p(x; o):

p(®;0) = Pdata *N(O. o(t)? I) and p(x) = s(f)_d p(x/s(t);o(t)). (20)
We can now express the probability flow ODE (Eq. using p(a; o) instead of py(a):
de = [f(t)z - % 9(t)* Vg log [pt( )]] dt 1)
[f(t)x — § Lot ¥ log [s(t p(m/s(t o(t))]] dt (22)
= [f®)=- : 3 9(t)* [Va log s(t ) + Ve logp(x/s(t); o(t))]] dt (23)
= [f®)x -5 g(t)* Valogp(z/s(t);0(1))] dt. (24)
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Appendix B. Derivation of formulas

B2. Our ODE formulation (Eq.  Next letus rewrite f(t) in terms of s(¢) based on Eq.

1and Eq. 4 ¢
%4 — ( jo £(€) df;‘) = s 25)
[O f©) e = logs(t) (26)
dl fo f(6) dg] /dt = d[logs(t)]/dt 27)
f6) = §()/s(). (28)

Similarly, we can also rewrite g(t) in terms of o (t):

t 2
v /0 igz dé = o(t) (29)

t 2
/0 gg2d = o(t)? (30)

t 2

dl/o i’gz d{f]/dt = d[o(t)?]/dt 31)
g()?/s(t)* = 206(t)a(t) (32)
g(t)/s(t) = 246(t)a(t) (33)
g(t) = s(t)v2a(t)o(t). (34)
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Appendix B. Derivation of formulas

B2. Our ODE formulation (Eq.
1 and Eq. 4)

Finally, substitute f (Eq.[28) and g (Eq.[34) into the ODE of Eq.[24
de = [[f(t)]«— 3 [9(t)]* Vi logp(z/s(t); ()] dt (35)

- [s(t)/s(t)] x — % [s(t) 24(t) J(t)]2 Ve logp(m/s(t); cr(t))] dt (36)

= |[5(t)/s(t)]) = -2 [2 s(t)2 &(t) a(t)] Ve log p(x/s(t); O‘(t))] dt (37)

. x
= 50 x — s(t)2 o(t) o(t) Vg logp (It); J(t))] dt. (38)

Thus we have obtained Eq. in the main paper, and Eq. |I|is recovered by setting s(f) = 1:

dz = —d(t) o(t) Ve l()gp(:n:(r(f)) dt. (39)

Our formulation (Eq. 4) highlights the fact that every realization of the probability flow ODE is simply
a reparameterization of the same canonical ODE; changing o (f) corresponds to reparameterizing 7,
whereas changing s(#) corresponds to reparameterizing .
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B.3 Denoising score matching

(Eqg. 2 and Eq. 3)
Ey~poEnn(0,02 |1D(y +750) — 913, (2)
then V,logp(z;0) = (D(z;0) —x) /o3, (3)

y : atraining image, n : noise

For the sake of completeness, we derive the connection between score matching and denoising for a
finite dataset. For a more general treatment and further background on the topic, see Hyviirinen [22]

and Vincent [54].

Let us assume that our training set consists of a finite number of samples {1, ..., yy }. This implies

Pdata() is represented by a mixture of Dirac delta distributions:

i 4
1
Pdata() = ¥ ; o(x —y,),
which allows us to also express p(x; o) in closed form based on Egq.
pl@;0) = Paaax N(0, o(t)? 1)

fd Pdata(To) N(:B; Ty, 02 I) dxg
R

=/Rd

Y
1
= ?Z/d}\f(m; xg, 02 1) 6(xo — y;) dzo
i=1 /R

Y

1

v 26(3:0 — yi)]N'(:c; xg, 02 I) dzo
=1

. ¥
= ?ZN(m: y;, 02 1),
i=1

(40)

(4D
(42)

(43)

(44)

(45)
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Let us now consider the denoising score matching loss of Eq. |2} By expanding the expectations, we

B.3 Denoising score matching can rewrite the formula as an integral over the noisy samples x:

(Eqg. 2 and Eq. 3)

L(D;o) = Eycpua En~n(0,021) ”D(y +n;0)— y”j (46)
]E'yNPdam]EnNN(O,a2I) ”D(y + n; 0) = y”%’ (2) = EyNPdata E:BA:N(y,a”I) ”D(CL’, 0-) = y“; (47)
then V. logp(x;0) = (D(:E: o) — a:) /a2, (3) = ]Eprm/ N(z; y, 0?2 1) “D(a:; o) — y“i dx (48)
Rd
y : atraining image, n : noise i

= 23 [ Ny 2D |D(@so) - de @)

i=1 Rd

L 2

= j]!;d v E.N'(w, y;, 02 1) ||D(a:;a) - yi”2 dez. (50)

i=1

=: E(B:m.a)

Eq.means that we can minimize £(D; o) by minimizing £(D; @, o) independently for each a:

D(x;0) = arg minp,.) E{. =, a). (5D
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B.3 Denoising score matching

(Eqg. 2 and Eq. 3)
Ey~poEnn(0,02 |1D(y +750) — 913, (2)
then V,logp(z;0) = (D(z;0) —x) /o3, (3)

y : atraining image, n : noise

This is a convex optimization problem: its solution is uniquely identified by setting the gradient w.r.t.
D(x; o) to zero:

0 = VD(m;a) I:E(D,J?,O’)] (52)
i ¥
0 = VD(:B;G’) ?ZN(wv Yis 02 I) ”D(:B,O') - y't”i] (53)
i=1
d 2
0 = SN yi, 1) Vo[ Do) - ill3) (54)
i=1
Y
i = ZN(QE, y;, 02 1) [2 D(z;0) — 2 yi] (55)
i=1
Y Y
B = [ZN(:B; Y, 02 I)] D(x;0) = Y N(x; y;, o> 1) y; (56)
i=1 i=1

: _ ZiN(‘I’: Yis o2 1) Y;
aza) = S s e 52 ° (57)

which gives a closed-form solution for the ideal denoiser D(x; o). Note that Eq.|57 is feasible to
compute in practice for small datasets — we show the results for CIFAR-10 in Figure|Ib.
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Next, let us consider the score of the distribution p(x; o) defined in Eq.

B.3 Denoising score matching Wiilissol

(Eqg. 2 and Eq. 3) Velogp(z;o0) = - (58)
Velv X N(x; y;, 021
Ey~poEnn(0,02 |1D(y +750) — 913, (2) _ _[Y LN (@ y _)] (59)
LY N(z; y;, 021
then V,logp(z;0) = (D(z;0) —x) /o3, (3) i LN (=i y )
>i Vol (x5 y;, 0% 1)
y : a training image, n : noise = S N(z; 9, 021) (60)
We can simplify the numerator of Eq.[60|further:
—.]12]
VN (; 9;, 21) = ¥, [(271'02)_% exp% (61)
2y [EEAE
= (2me”) ¥ N [exp =B | (62)
oy —% 2 — ll3 2 — ll3
= [(271’0 ) Zexp 552 | V2| 342 (63)
? 1? T _2 0_2

= N(z; i, 0°1) [ya—}m] (63)
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B.3 Denoising score matching Let us substitute the result back to Eq.

(Eq. 2 and Eq. 3) > ValN (z; y;, 02 1)

Ve logp(x;0) = > M u,, 021) (66)
Ey~poEnn(0,02 |1D(y +750) — 913, (2) SN (3 y, 02 1) [252]
then V, logp(z; o) = (D(x;0) — z) /02, (3) - YN (x5 yy, 02 1) ke
y : a training image, n : noise = (%Aﬁ?;’y; ’U;I)Iili = m) Jo?, (68)

Notice that the fraction in Eq.[68]is identical to Eq.[57} We can thus equivalently write Eq.[68|as
Ve logp(x;0) = (D(x; o) — :v)/ch, (69)
which matches Eq.|3|in the main paper.
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Let us consider @ to be a scaled version of an original, non-scaled variable @ and substitute = = s(f) x

B4. Evaluating our ODE in practice
into the score term that appears in our scaled ODE (Eq. [4):

(Algorithm 1)

Va log p(z/s(t); o (1)) (70)

= Viswa logp([s(t) &]/s(t);0(t)) (71)

Vz logp(z;0) = (D(z;0) —x) /o?, (3) B Vls(t)é’ togp (i:; o(t)) (72)
= s Valogp(;o(t)). (73)

We can further rewrite this with respect to D(-) using Eq.

Time-dependent signal scaling
Vi log p(z/s(t);o(t)) = W(D(i;a(t)) - :i') (74)

de = @ x — s(t)? ¢(t) o(t) Vg logp (%Ia(f))l dt. (4)

dx = —d(t) o(t) Vg logp(a:; a(t)) dt, fors(t) =1

43



Elucidating the Design Space of Diffusion-Based Generative Models

Appendix B. Derivation of formulas

B4. Evaluating our ODE in practice Let us now substitute Eq. |7 mto Eq. l approximating the ideal denoiser [(-) with our trained model
(Algorithm 1) Do (-):

de = [é(t) z/s(t) — s(t)? 6(t) o(t) [W (Dg(:i:;d(t)) - :c)” at (75)

30) g — 2O (D (#;0(t)) —2) | dt. (76)

Ve logp(z;0) = (D(z;0) — ) /o2, (3) [S(t) e ( )]

Finally, backsubstitute & = x/s(t):

Time-dependent signal scaling dz = §§3 - %(De(@]ﬁ(m - [«’E])] dt (a7
_ 50 , _ sws) :

4o — |30 (07 5(0) o(t) Va Io (i-o(t))l i@ = @ -T@;—(D ([z/s(®)); (1)) -[m/S(t)])] dt (78)

= s ¢ =8P\ 502)’ ' = |[E8 & — 20O py (a/5(1); 0(t)) + 29 ] dt (79)

dez = —¢(t) o(t) Vg logp(x:o(t)) dt, for s(t) =1 - (aftg + ;Eg) x — a(;)(:)(t Dy (z/s(t);0(t ))] dt. (80)

We can equivalenty write Eq.[80]as

V(2 ) ().
matching lines 4 and 7 of Algonthml
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day = \—c'r(t)a(t)vm log p(z;0(t)) dt

Elucidating the Design Space of Diffusion-Based Generative Models

Appendix B. Derivation of formulas

B5. Our SDE formulation (Eq. 6)

(6)

probability flow ODE (Eq.[T)

+ E?(t)a(t)gvz log p(x; 0 (t)) dt + v2B(t)a (t) duw,

2.4 . . » .
deterministic noise decay noise injection

N\

S

Langevin diffusion SDE

Derive the SDE of Eq. 6 by the following strategy;

The desired marginal densities p(x;a(t)) are
convolutions of the data density py.:q @nd an isotropic
Gaussian density with standard deviation o(t) (see Eq.
20). Hence, considered as a function of the time ¢, the
density evolves according to a heat diffusion PDE with
time-varying diffusivity. As a first step, we find this PDE.

We then use the Fokker—Planck equation to recover a
family of SDEs for which the density evolves according
to this PDE. Eq. 6 is obtained from a suitable
parametrization of this family.

B.5.1 Generating the marginals by heat diffusion

We consider the time evolution of a probability density g(x,?). Our goal is to find a PDE whose
solution with the initial value ¢(x.,0) = pgaa(x) is g(x, 1) = p(;z:. rf(z‘)). That is, the PDE should
reproduce the marginals we postulate in Eq.

The desired marginals are convolutions of pga, With isotropic normal distributions of time-varying
standard deviation (), and as such, can be generated by the heat equation with time-varying
diffusivity r(7). The situation is most conveniently analyzed in the Fourier domain, where the
marginal densities are simply pointwise products of a Gaussian function and the transformed data
density. To find the diffusivity that induces the correct standard deviations, we first write down the
heat equation PDE:

(?q(gl’;,f_) =k(F)Azale; L)

The Fourier transformed counterpart of Eq.[82] where the transform is taken along the x-dimension,
is given by

(82)

WY _(owldw.o. (83)

The target solution ¢(a, t) and its Fourier transform ¢(v, t) are given by Eq.
~ q(x,t) = p(x;0(t)) = paaa() * N'(0, o(t)* I) (84)
L) = jaa@) exp (=3 vl o(t)?). (85)
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BS. Our SDE formulation (Eq. 6) B.5.1 Generating the marginals by heat diffusion

Differentiating the target solution along the time axis, we have

dey = —0(t)o(t)Ve logp(x;o(t)) dt 6 dq(v,t ; x
: zlogp(zio(t) &t (g) WD~ 4(0)0(0) Wl puuale) exp (~4 P (1)) (36)
probability flow ODE (Eq.[T) t 9
= —a(t)o(t) [v|° ¢(v,t). (87)
+ B(t)o(t)*Vz log p(x; o (t)) dt + /28(t)o(t) dw
? atE) Vo ng( i )) N B( )v( ) - Eqs.and share the same left hand side. Equating them allows us to solve for () that generates
deterministic noise decay e e the desired evolution:
Langevin diffusion SDE —k()|v24v,t) = —a(t)a(t) |v|? §(v,t) (88)

Vv k() = d&(t)o(t). (89)
B.5.1
« The desired marginal densities p(x;0(t)) are To summarize, the desired marginal densities corresponding to noise levels o(¢) are generated by the
convolutions of the data density pyu:, and an isotropic ~ PDE
Gaussian density with standard deviation o(t) (see Eq. e G (t)o(t) Agg(z,t) (90)
20). Hence, considered as a function of the time ¢, the L. Ot G
density evolves according to a heat diffusion PDE with from the initial density q(x,0) = pgaa(x).
time-varying diffusivity. As a first step, we find this PDE. :
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BS. Our SDE formulation (Eq. 6) B.5.2 Derivation of our SDE
Given an SDE
dey = —d(t)o(t)Velogp(x;o(t)) dt (6) 6 = SN & B e
% - 4 the Fokker—Planck PDE describes the time evolution of its solution probability density r(x, {) as
probability flow ODE (Eq.[T)
v 2D _ g ($@,0) r(@,0) + 3V : (D(a,0) r(a, 1) (92)
= =Vg (fi®, £) vl&, 5 2 &, 1) rla, L)),
+ B(t)a(t)* Ve log p(z;0(t)) dt + /28(t)o(t) dwy, ot = L
deterministic noise decay noise injection where D;; = 3", 9.9 J1c is the diffusion tensor. We consider the special case g(z,t) = g(t) I of
% ~ ~ x-independent white noise addition, whereby the equation simplifies to
Langevin diffusion SDE
or(ax,t :
. E,),—t) = —Va - (Fz,8) v(z, 1)) + 319(E)* Asr(e, ). (93)
B.5.2

* We then use the Fokker-Planck equation to recover @  We are secking an SDE whose solution density is described by the PDE in Eq.[90] Setting (. /) =
family of SDEs for which the density evolves according (. ) and equating Eqs.[93]and[90] we find the sufficient condition that the SDE must satisfy
to this PDE. Eq. 6 is obtained from a suitable

parametrization of this family. —Ve - (f(z,t) g(z,t)) + 1 g(t)? Agq(z,t) = 6(t) o(t) Ang(a,t) (94)
V V- (flm,t)g@,t) = (300)*=0(t)o®)) Aag(x,t). (95)
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